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Abstract model of the structure, which introduces uncertainties

Active control has been performed on a structure
possessing complex modal behavior. This structure had
closely spaced modes, creating a "beat phenomena” in
the structure's free vibration. The dynamic
characteristics of the actuators are reported and a model
for the interaction of actuator and structure is developed.
Reaction mass actuators (RMAs) were analyzed with
two control schemes. A local velocity feedback (LVF)
controller was designed and implemented. A full state
feedback controller was designed and evaluated on an
experimentally verified analytical model of the flexible
structure. Various linear quadratic regulator (LQR)
control laws were considered and compared to the LVF
controller. An investigation was performed using the
LQR controller that investigated the effects of the stroke
length with a full state feedback controller,

1. Introduction

- Flexible space structures will require some form of

control 10 minimize or eliminate undesirable vibrations.
This has driven researchers to examine various «hemes
of active control to suppress a structure's v.oration,
Many analytical studies are based on a linear quadratic
(LQ) optimal control scheme [1). Fundamental to LQ
controllers is the linear quadratic regulator (LQR); this
controller is based on the assumption that all full states
of the system model, the states of the structure and
actuators, are available to each of the controllers [2].
Unfortunately, it is difficult to implement an LQR
control scheme since it is almost always necessary to
develop an observer to estimate the states in the system,
Often the LQR controller is based on a reduced-order

and perhaps instabilities in the higher-order modes [1].
These issues have driven many experimental studies to
examine simpler control laws [1,3,4].

The purpose of this paper is to first develop one such
simple controller, that is, its design and experimental
implementation into 2 structure with complex modal
behavior. Secondly, an LQR controller will be designed
and compared to the LVF controller. The dynamic
characteristics of the actuator and structure are reported.

2. Experimental System Description

An experimental (Figure 1) apparatus was employed to
study the ability of RMAs (Figure 2) to control the
vibrations of a structure with closely coupled modes.
This test bed system is known as the MRT structure
(mass reactive 1" strucwre). This structure was designed
to have low order coupling - there were to be two
dominant low-frequency structural modes, and the higher
modes were to possess frequencies at least three times
that of the first mode [5]. The structure weighs
approzimately 240 pounds and is very lightly damped.
Each RMA reaction mass has a weight of only 4
pounds. Applying two actuators to this vibration
suppression problem yields an actuator mass to
structural mass ratio of approximately 3%.

The MRT structure was modeled using a 48-degree of
freedom MSC/NASTRAN model. From this model, a
reduced fourth order model was then selected such that
the first two structural modes (the modes to be
controlled) were as accurate as possible. This model
reduction was based on an accurate reduction technique
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reduction was based on an accurate reduction technique
outlined by Hallau2r and Barthelemy (6]. For the
configuration shown in Figure 1, the structure's first
resonant frequency corresponded to a torsional, or
twisting, motion about the z-axis. The second frequency
comesponded to a bending motion about the x-axis.

The analytical model was then validated by making a
comparison to the experimental structure. To verify the
analytical model, the structure's open loop resonant
frequencies were determined and compared to the
analytical modes (refer to Table 1). The modal damping
in the baseline structure was identitied using SDRC's
Polyreference software and is reported in Table 2. Since,
it is of intcrest to control the first two modes of
vibration the model retains four modes because of
potential spillover effects [7].

3. System Dynamics

The dynamics of the system will be broken into two
parts. First, the dynamics of the RMA will be
investigated, and the critical constants for modeling the
dynamics of the RMA will be reported. Second, the
overall system dynamics, that is, the dynamics of the
interaction of the structure and actuator will be wodeled.

ion nami

From the block diagram of Figure 3, the circuit gain
representation of the damping and stiffness may be
obtained. To finds these gains, consider the transfer
function of the PD controller,

xRi(S)‘Xs(S)_ KampKcoil )
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where
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The term, mg;, is the reaction mass of the RMA and C,

is the internal damping of the actuator. The values of
the coefficients in Eq. (1) are reported by Garcia (8].

I n ion
The dynamics of the combined actuator and structure can
be represented with second order dynamics {9]. This
model combines the dynamics of the baseline structure (

the structure without actuators) with the dynamics of the
reaction mass actuators.
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The coefficients cr; and kg; represent the individual
damping and stiffness constants for each RMA, as
determined in the previous section. The matrices Kr
and DR are defined as,

"kr1 00 0
0 00 0

Kr=l 0 00 0 )
L 0 00kg
FcrR100 0
000 0

Dr=| 9 00 0 @
g 0 00cg

The structural damping matrix was reconstructed using a
modal damping assumption where the matrix Sp,
represents the mass weighted normalized eigenfunctions
of the model [10],

Ds = SmDIAG[ 20101, .., 204w4) ST )

The control vector, fg, is of the form

fo=1[fg1 fg2JT ©)
The force term , fp;, is a function of the force/voltage
constant of the RMA and the voltage command signal,
fcMp (see Figure 3).

4. Local Velocity Feedback Control

For this study, it was desired to implement, for each
RMA, a simple active control strategy involving local




velocity feedback (LVF). This control strategy was
employed in order to take advantage of its low authority
controller characteristics; that is, the actuators apply
control forces which are govemed only by sensors
physically collocated to the RMA assemblies. The
inputs to Eq. (1) are set equal 1o,
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where i = 3 or 6. Here all sensors are carried on the
RMA, while the control law is performed off-line on an
analog computer; on-board controller circuits have been
incorporated into some RMA designs [9].

To implement LVF control, both actuators were first
passively tuned. Several procedures exist for calculating
the optimum frequency and damping ratio to which 1o
tune each RMA [11,12]. It was found that better
performance could be achieved by not applying optimum
tuning. Essentially, the LVF control strategy sacrifices
damping in the actuator modes of the system to increase
damping in the structural modes. This can be
understood through an analysis of the poles of the
system {13]. This analysis shcws that as the gain of the
LVF controller is increased the poles of the actuator
dominated modes of the system approach the imaginary
axis as the poles of the structure dominated poles move
deeper into the left half planc. The principle of the
optimally tuned passively damped absoiber celies on the
relative motion between the strecture and the actuator to
dissipate energy. This optimal tuning produces a lightly
damped absorber that guarantees motion in the actuator,
and hence, the dissipation of energy. This optimal
absorber is generally too lightly damped to yield any
significant performance in the LVF control scheme.
This is because the poles of the actuator dominated
modes of the system are too close to the imaginary axis
and as the LVF controller gain is increase, the actuator
destabilizes.

A comparison of the open loop and closed loop system
time histories is given in Figure 4, for the response of
the structure at the actuator locations. The open loop
settling time exceeded 500 seconds, and for the closed
loop system the settling time dropped to 1.5 seconds.
The analytical response for the closed loop system is
shown in Figurc §.

5. Linear Quadratic Regulator Control

The sccond part ¢f our analysis was to implement an
LQR control law on the MRT structural model and
analyzec the effects of various weighting matrices. In
particular, it was of interest to study the performance of
the system when varying relative penalties between the
penalty on the absolute motion of the structure versus
the relative motion (o« stoke length) of the aciuator.
The system in Eq. (2) can be cast into the following
state space representation for the structure [10]

x = Ax + Bu @8)
with output measurements defined by
y=Cx : ®

The standard lincar quadratic regulator has a performance
functional of the form

o0

1= J(xTQx +uTRu)dt (10)

where Q and R are weighting matrices. The value of
the fecdback gain matrix Ky is found such that the cost
functional of Eq. (10) is minimized. State feedback
control is implemented by specifying the relation

u=-Kx=RI1BTSx an

and the optimum value of the performance index, J,
given an initial condition, x(0), is

J = x(0)TSx(0) (12)

where S is found by solving an algebraic matrix Ricatti
equation [14).

Various methods exist for choosing suitable Q and R
matrices. From our experimental observations the
importance of the actuator stroke length in the
performance of the system became clear, hence, the Q
matrix was defined as

= [ 5 o]

where the submatrix is

Wact 0 -waq 0 0 0

0 wacr O 0 0 -wact
Qs = -Wact 0 wsiue O 0 0
s 0 0 0 wStmc O 0

0 0 0 0 WS:ruc 0
0 -waer O 0 0 Wsrruc’!

The weighting coefficients wgiye and wyep determined
the penalty on the absolute displacement of the structure
and the relative displacemeut of the reaction mass,
respectively. This relative displacement can be thought
of as the stroke length of the actuator. The penalty on
the controller was defined as

R=10e-031

where wgrye was set to 1000. Here we will examine
the results of setling wyey to [1, 10, 100, 1000] to
illustrate the effects of stroke length on performance.
The results of this study arc presented in Table 3. Also




recported in this table are the maximum normalized
stroke length of the actuator for each controller. This
term is considered here to be the absolute maximum of
the actuator’s stroke normalized to the absolute
maximum of the deflection of the structure. This
normalized stroke length determines how many times
larger the stroke length must be relative to the absolute
structural displacement. .

. . T e RNV ]
A vibration suppression index was formulated from the
time responsc histories for each feedback control
produced from the varying penalty functions. This index
quantifies the performance of each case, i.c., the lower
the number, the greater the vibration attenuation. The
values of this index were calculated with the relation:

.

ir

VSI= stmcllxsuuc”dt
0

where Xxgiruce 1S the response matrix of the structure.
Clearly, Table 3 shows that as the penalty is reduced on
the stroke of the actuator the performance of the system
greatly increases. As the performance of the system
increases the stroke length requirements of the actuator
also increase. Physically, this makes sense, since it is
the reaction force applied to the structure of the
accelerating RMA masses which produce the coatrol
forces for vibration attenuation. Figures 6 are the time
histories for the displacement of the structure at RMAs
1 for the given initial condition.

Interestingly, the normalized maximum stroke length
requirced for the LVF controlled response was 11.013.
This value is consistent with those of the LQR
controllers of Table 3. From the time histories of the
LQR and LVF controller we can say that the
performance of the LVF controller is better than the
LQR controller when w, =100, and worse than the
LQR when wyae=10. The normalized maximum stroke
length for the LVF controller was between the two
values of the LQR controllers for wacy =10 and 100.
This indicated that for either this simple low authority
controller or the full state feedback regulator, the
underlying factor determining performance is the stroke
length of the actuator.

6. Closing Remarks

A simple feedback control law based on a local velocity
signal has been designed and implemented into a
complex flexible structure. It was shown that although
the actuator to structurc mass ratio for the system was
only 3% the closed loop settling time was reduced to 1.5
seconds where the open loop system settling time for
the system was approximately 500 seconds.
Experimentally it was observed that the LVF feedback
controller drove the RMA mass to react, or accelerate,
against the structural motion. Logically, the faster the
actuator mass accelerates, more stroke length is required
to permit the resulting motion.  Hence, the actuator

strokc length governed the performance of the RMA
actuated system. This was also studied by applving an
LQR controller which also showed a strong dependence
on the actuator stroke length. Furthermoie, the LVF
control law performed nearly the same as the LQR
controller when both controllers used the same degree of
actuator stroke length.
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Analytical (Hz) | Experimental Percent Error
N (Hz) (%)
4.6417 4.618 0.5
S5.1904 5.113 1.5
109.4542 89.669 22.1
163.1361 129.109 26.3

Table 1. Analytical and Experimental Structural
Resonant Frequencies.

Mode Damping Ratio Modal
(% critical) Confidence

) Factor

1 079 0.999

2 267 0.994

3 .169 0.998

4 314 0.998

Table 2. Modal Analysis - Polyreference identified
damping factors.

Actuator | Normalized Cost, J Vibration
Weighting Max. Suppression
Wact Stroke Index

Length
1.0 29.342 2,322 0356
10 17.381 4,481 0665
100 6.4272 12,253 .1967
1000 0.7386 14,378 1.5000

Table 3. Performance cost and stroke length
requirements for various degrees of pcnalty on actuator
stroke.
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Figure 1. Schematic representation of the MRT structure.
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Figure 2. Schematic of the RMA assembly - side view.
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Figure 3. Block disgram of thc Reaction Mass Actuator Control
Cirauits.
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"Figure 4. Opea (a) and closed Joop LVF coatrol (b) time
histories for RMAs 1 and 2.
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Figure 5. Analytical Respoase of the closed loop LVF
control system.
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Figure 6. Free decay responses at RMAs 1(a) and 2 (D)
for various LQR feedback coatrollers.




